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Abstract

Purpose: Echocardiography is the most commonly used modality for assessing the heart in

clinical practice. In an echocardiographic exam, an ultrasound probe samples the heart from

different orientations and positions, thereby creating different viewpoints for assessing the

cardiac function. The determination of the probe viewpoint forms an essential step in automatic

echocardiographic image analysis.

Approach: In this study, convolutional neural networks are used for the automated identification

of 14 different anatomical echocardiographic views (larger than any previous study) in a dataset

of 8732 videos acquired from 374 patients. Differentiable architecture search approach was

utilized to design small neural network architectures for rapid inference while maintaining high

accuracy. The impact of the image quality and resolution, size of the training dataset, and number

of echocardiographic view classes on the efficacy of the models were also investigated.

Results: In contrast to the deeper classification architectures, the proposed models had signifi-

cantly lower number of trainable parameters (up to 99.9% reduction), achieved comparable

classification performance (accuracy 88.4% to 96%, precision 87.8% to 95.2%, recall 87.1%

to 95.1%) and real-time performance with inference time per image of 3.6 to 12.6 ms.

Conclusion: Compared with the standard classification neural network architectures, the pro-

posed models are faster and achieve comparable classification performance. They also require

less training data. Such models can be used for real-time detection of the standard views.

© 2021 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.8.3.034002]
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1 Introduction

Echocardiography or cardiac ultrasound imaging is the modality of choice for the diagnosis of

cardiac pathology. Echocardiographic (echo) measurements provide quantitative diagnostic

markers of cardiac function. Portability, speed, and affordability are the advantages of echo.

Echo examinations are typically focused upon protocols containing diverse probe positions

and orientations providing several views of the heart anatomy. Standard echo views require im-

aging the heart from multiple windows. Each window is specified by the transducer position and

includes parasternal, apical, subcostal, and suprasternal. The orientation of the echo imaging

plane produces views such as long axis, short axis, four-chamber, and five-chamber.1
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Interpretation of echo images begins with view detection. This is a time-consuming and

manual process that requires specialized training and is prone to inter- and intra-observer vari-

ability. Echo images are very similar and can be particularly challenging for an operator to

successfully categorize.

Therefore, accurate automatic classification of heart views has several potential clinical appli-

cations such as improving workflow, guiding inexperienced users, reducing inter-user discrep-

ancy, and improving accuracy for high throughput of echo data and subsequent diagnosis.

In most current clinical practice, images from different modalities are managed and stored in

Picture Archiving and Communication Systems. Recently, add-on echo software packages, such

as EchoPAC (GE Healthcare) and QLAB (Philips), attempt to automate the analysis and diag-

nosis process. However, they still necessitate human involvement in detecting relevant views.

As previously stated, echocardiography image frames are not easily discernible by the operator,

plus there is often background noise. Therefore, automatic view classification could be widely

beneficial for pre-labeling large datasets of unclassified images.2,3

Application of machine learning algorithms in computer vision has improved the accuracy

and time-efficiency of automated image analysis, particularly automated interpretation of medi-

cal images.4–7 However, traditional machine learning methods are constructed using complex

processes and tend to have a restricted scope and effectiveness.8,9 Recent advances in the design

and application of deep neural networks have resulted in increased possibilities when automating

medical image-based diagnosis.10,11

1.1 Approaches to Neural Network Design

Convolutional neural networks (CNNs) are extremely effective at learning patterns and features

from digital images and have demonstrated success in many image classification tasks.12,13

However, this success has been accompanied by a growing demand for architecture engineering

of increasingly more complex deep neural networks through a time-consuming and arduous

manual process. Moreover, the developed architectures are usually dependent on the particular

image dataset used in the design process, and adapting the architectures to new datasets remains

a very difficult task that relies on extensive trial and error process and expert knowledge.

Recently, increased attention has been paid to emerging algorithmic solutions, such as neural

architecture search (NAS), to automate the manual process of architecture design, and these have

accomplished highly competitive performance in image classification tasks.14–17 NAS can

actually be considered as a subfield of automated machine learning (AutoML).18

Pivotal to the NAS architecture is the creation of a large collection of potential network archi-

tectures. These options are subsequently explored to determine an ideal output with a specific

combination of training data and constraints, such as network size. Initial NAS approaches, such

as reinforcement learning19,20 and evolution,21 search for complete network topology, thus

involving extremely large search spaces composed of arbitrary connections and operations

between neural network nodes. Such complexity results in using massive amounts of energy

and requiring thousands of GPU hours or million-dollar cloud computing bills22 to design neural

network architectures.

Successful NAS approaches, such as efficient neural architecture search (ENAS) from

Google Brain15 and more recently differentiable architecture search (DARTS),16 have been

shown to reduce the search costs by orders of magnitude, requiring ∼100× fewer GPU hours.

These methods leverage an important observation that popular CNN architectures often contain

repeating blocks or are stacked sequentially. Their effectiveness is thus owing to the key idea of

focusing on finding a small optimal computational cell (as the building block of the final archi-

tecture), rather than searching for a complete network. The size of the search space is therefore

significantly reduced since the computational cells contain considerably fewer layers than the

whole network architecture, which would make such approaches potentially viable for solving

real-world challenges.

The DARTS method has been shown to outperform ENAS in terms of the GPU hours

required for the search process.16 While most NAS studies report experimental results using

standard image datasets such as CIFAR and ImageNet, the effectiveness of DARTS on scientific
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datasets, including medical images, has also been demonstrated. In this study, the DARTS

method for designing customized architectures has been adopted.

1.2 Related Work on Echocardiography View Classification

Most previous studies on automatic classification of echocardiographic views have used hand-

crafted features and traditional machine learning techniques, achieving varying degrees of

success in classifying a limited number of common echocardiographic views.22–30 Following

the recent success of deep CNNs in computer vision, and particularly for image classification

tasks, there has been a handful of reports on the application of deep learning for cardiac ultra-

sound view detection. Herein, we have focused on such studies.

Gao et al.30 proposed a fused CNN architecture by integrating a deep learning network along

the spatial direction, and a hand-engineered feature network along the temporal dimension. The

final classification result for the two-strand-network was obtained through a linear combination

of the classification scores obtained from each network. They used a dataset of 432 image

sequences acquired from 93 patients. For each strand of CNN network implemented using

MATLAB, it took two days to process all images. Their model achieved an average accuracy

rate of 92.1% when classifying eight different echocardiographic views.

In another study,31 view identification formed part of an automated pipeline designed for

the interpretation of echocardiograms. The standard VGG architecture was employed as the

CNN model, and six different echocardiographic views were included in the study. The class

label for each video was assigned by taking the majority decision of predicted view labels on

the 10 frames extracted from the video. The overall classification accuracy, calculated from the

reported confusion matrix, was 97.7%, and no results for single image classification was

reported. In a follow-up study,3 they included 23 views (nine of which were three apical planes,

each one divided into no occlusions, occluded LA, and occluded LV categories) from 277

echocardiograms. The reported overall accuracy of the VGG model dropped to 84% at an

individual image level, with the greatest challenge being distinctions among the various apical

views. By averaging across multiple images from each video, higher accuracies could be

achieved.

Madani et al.32 proposed a CNN model to classify 12 standard B-mode echocardiographic

views (15 views, including Doppler modalities) using a dataset of 267 transthoracic studies

(90% used for training-validation, and 10% for testing). An inference latency of 21 ms per image

was achieved for images with a size of 60 × 80 pixels. They also reported an average overall

accuracy of 91.7% for classifying single frames, compared to an average of 79.4% for expert

echocardiographers classifying a subset of the same test images. However, this may not be a fair

comparison as the expert humans were given the same downsampled images that were fed

into the CNN model, but the human experts are not trained on, and have no experience of work-

ing with, such low-resolution images. Later on, they reported an improved classification accu-

racy of 93.64% by first applying a segmentation stage, where the field of view was extracted

from the images using U-Net model33 and the isolated image segment was then fed into the

classifier.34

In a more recent study,6 a CNN model was proposed with the aim to balance accuracy and

effectiveness. The design was inspired by the Inception35 and DenseNet36 architectures. The

performance of the model was examined using a dataset of 2559 image sequences from 265

patients, and an overall accuracy of 98.3% was observed for classifying seven echocardiographic

views. The reported inference time was 4.4 and 15.9 ms when running the model on the GPU and

CPU, respectively, for images with a size of 128 × 128 pixels.

Vaseli et al.37 reported on designing a lightweight model with the knowledge of three state-of-

the-art networks (VGG16, DenseNet, and ResNet) for classifying 12 echocardiographic views.

A maximum accuracy of 88.1% was observed using their lightweight models, with a minimum

inference time of 52 μs for images with a size of 80 × 80 pixels. However, the reported accu-

racies are provided for classifying cine loops, and are computed as the average of the predictions

for all constituent frames in each cine loop. It is unclear how many frames constituted a cine

loop. For a cine loop containing 120 frames (time-window of 2 s acquired at 60 frames∕s),

therefore, an inference time of ≥6.2 ms would be required to achieve the reported accuracy.
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A more rigorous examination of their models also seems necessary and, as apparent from the

provided confusion matrices, a great majority of the reported misclassifications, seen as a failure

of the models, occurred for parasternal short-axis views.

1.3 Main Contributions

Given our two competing objectives of minimizing the neural network size and maximizing its

prediction accuracy, this study aims to adopt the recent NAS solution of DARTS for designing

efficient neural networks. To the best of our knowledge, no other study has applied DARTS to

the complex problem of echocardiographic views classification.

In our study, we also aimed at including subclasses of a given echocardiographic view. In

general, the more numerous the view classes, the more difficult the task of distinguishing the

views for the CNN model. This is because if a group of images is considered as a single view in

one study and as multiple views in another, those multiple views are likely to be relatively similar

in appearance. Perhaps this is one of the primary reasons for the wide range of accuracies

(84% to 97%) reported in the literature.

We have previously reported on preparation and annotation of a large patient dataset,

covering a range of pathologies and including 14 different echocardiographic views, which

we used for evaluating the performance of existing standard CNN architectures.38 In this study,

we will use this dataset to design customized network architectures for the task of echo view

classification.

The input image resolution could potentially impact the classification performance. In case of

aggressively downsampled images, the relevant features may in fact be lost, thus lowering the

classification accuracy. On the other hand, unnecessarily large images would result in more com-

putations. Nevertheless, all previous reports considered one particular (but dissimilar in different

studies) image resolution, the selection of which was always unexplained. Herein, we have thus

looked at the impact of different input image resolutions.

The accuracy of deep learning classifiers is largely dependent on the size of high-quality

initial training datasets. Collecting an adequate training dataset is often the primary obstacle

of many computer vision classification tasks. This could be particularly challenging in medical

imaging where the size of training datasets are scarce, e.g., because the images can only be

annotated by skilled experts. Hence, it would be advantageous to require less training data.

Therefore, we examined the influence of the size of training data on the model’s performance

for each of the investigated networks in this study.

No matter how ingenious the deep learning model, image quality places a ceiling on the

reliability of any automated image analysis. Echocardiograms inherently suffer from relatively

poor image quality. Therefore, we also looked at the impact of image quality on the classification

performance.

In light of the above, the main contributions of this study can be summarized as follows:

• Inclusion of 14 different anatomical echocardiographic views (outlined in Fig. 1); larger

than any previous study. We also examined the cases when only seven or five different

views were included to investigate the impact of the number of views on the detection

accuracy.

• Analysis of three well-known network topologies and of a proposed neural network,

obtained from applying NAS techniques to design network topologies with far fewer train-

able parameters and comparable/better accuracy for echo view classification.

• Analysis of computational and accuracy performance of the developed models using our

large-scale test dataset.

• Analysis of the impact of the input image resolution; four different image sizes were

investigated.

• Analysis of the influence of the size of training data on the model’s performance for

all investigated networks.

• Analysis of the correlation between the image quality and accuracy of the model for view

detection.
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2 Dataset

In this section, a brief account of the patient dataset used in this study is provided. A detailed

description, including patient characteristics, can be found in Howard et al.38

A random sample of 374 echocardiographic examinations of different patients and performed

between 2010 and 2020 was extracted from Imperial College Healthcare NHS Trust’s

echocardiogram database. The acquisition of the images was performed by experienced echo-

cardiographers and according to standard protocols, using ultrasound equipment from GE and

Philips manufacturers.

Ethical approval was obtained from the Health Regulatory Agency (Integrated Research

Application System identifier 243023). Only studies with full patient demographic data and

without intravenous contrast administration were included. Automated anonymization was

performed to remove all patient-identifiable information.

The videos were annotated manually by an expert cardiologist, categorizing each video into

one of 14 classes which are outlined in Fig. 1. Videos thought to show no identifiable echo-

cardiographic features, or which depicted more than one view, were excluded. Altogether, this

resulted in 9098 echocardiographic videos. Of these, 8732 (96%) videos could be classified as

one of the 14 views by the human expert. The remaining 366 videos were not classifiable as a

single view, either because the view changed during the video loop, or because the images were

completely unrecognizable. The cardiologist’s annotations of the videos were used as the ground

truth for all constituent frames of that video.

DICOM-formatted videos of varying image sizes (480 × 640, 600 × 800, and 768 ×

1024 pixels) were then split into constituent frames, and three frames were randomly selected

from each video to represent arbitrary stages of the heart cycle, resulting in 41,321 images. The

dataset was then randomly split into training (24,791 images), validation (8265 images), and

Fig. 1 The 14 cardiac views in transthoracic echocardiography: apical two-chamber (A2CH),

apical three-chamber (A3CH), apical four-chamber left ventricle focused (A4CH-LV), apical four-

chamber right ventricle focused (A4CH-RV), apical five-chamber (A5CH), parasternal long-axis

(PLAX-Full), parasternal long-axis tricuspid valve focused (PLAX-TV), parasternal long-axis

valves focused (PLAX-Valves), parasternal short-axis aortic valve focused (PSAX-AV), paraster-

nal short-axis left ventricle focused (PSAX-LV), subcostal (Subcostal), subcostal view of the

inferior vena cava (Subcostal-IVC), suprasternal (Suprasternal), and apical left atrium mitral valve

focused (LA/MV).
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testing (8265 images) sub-datasets in a 60:20:20 ratio. Each sub-datasets contained frames from

separate echo studies to maintain sample independence.

The relative distribution of echo view classes labeled by the expert cardiologist is shown in

Fig. 2 and indicates an imbalanced dataset, with a ratio of 3% (Subcostal-IVC view as the least

represented class) to 13% (PSAX-AV view as the dominant view).

3 Method

Details of the well-known classification network architectures investigated in this study (i.e.,

VGG16, ResNet18, and DenseNet201) can be found in relevant resources.36,39,40 Here, a detailed

description of the designed CNN models will be provided.

3.1 DARTS Method

Proposed by Liu et al.,16 DARTS formulates the architecture search task in a differentiable man-

ner. Unlike conventional approaches of applying evolution21,41 or reinforcement learning14,42

over a discrete and non-differentiable search space, DARTS is based on the continuous relax-

ation of the architecture representation, allowing an efficient search of the architecture using

gradient descent.

DARTS method consists of two stages: architecture search and architecture evaluation. Given

the input images, it first embarks on an architecture search to explore for a computation cell

(a small unit of convolutional layers) as the building block of the neural network architecture.

After the architecture search phase is complete and the optimal cell is obtained based on its

validation performance, the final architecture could be formed from one cell or a sequential stack

of cells. The weights of the optimal cell learned during the search stage are then discarded, and

are initialized randomly for retraining the generated neural network model from scratch.

A cell, shown in Fig. 3, is an ordered sequence of several nodes in which one or multiple

edges meet. Each node CðiÞ represents a feature map in convolutional networks. Each edge ði; jÞ

is associated with some operation Oði;jÞ, transforming the node CðiÞ to CðjÞ. This could be a com-

bination of several operations, such as convolution, max-pooling, and ReLU.

Each intermediate node CðjÞ is computed based on all of its predecessors as

EQ-TARGET;temp:intralink-;e001;116;117CðjÞ ¼
X

i<j

Oði;jÞðCðiÞÞ: (1)

Instead of applying a single operation (e.g., 5 × 5 convolution), and evaluating all possible

operations independently (each trained from scratch), DARTS places all candidate operations on

Fig. 2 Distribution of data in the training, validation and test dataset; values show the number of

frames in a given class.
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each edge (e.g., 5 × 5 convolution, 3 × 3 convolution, and max-pooling represented in Fig. 3 by

red, blue, and green lines, respectively). This allows sharing and training their weights in a single

process. The task of learning the optimal cell is effectively finding the optimal placement of

operations at the edges.

The actual operation at each edge is then a linear combination of all candidate operations

Oði; jÞ, weighted by the softmax output of the architecture parameters αði;jÞ:

EQ-TARGET;temp:intralink-;e002;116;416Oði;jÞðCÞ ¼
X

o∈∂

expðα
ði;jÞ
o Þ

P
o 0∈∂ expðα

ði;jÞ
o 0 Þ

OðCÞ: (2)

Optimization of the continuous architecture parameters α is carried out using gradient

descent on the validation loss. The mixed operation Oði;jÞ is then replaced by the operation

Oði;jÞ corresponding to the highest weight:

EQ-TARGET;temp:intralink-;e003;116;325Oði;jÞ ¼ argmaxo∈∂ α
ði;jÞ
0 : (3)

An example final cell architrave is displayed in the right panel, in Fig. 3. The task of archi-

tecture search is learning a set of continuous variables in vector αði;jÞ.

The training loss Ltrain and validation loss Lval are determined by the architecture parameters

α and the weights ω in the network. The learning of α is performed in conjunction with learning

of ω within all the candidate operations (e.g., weights of the convolution filters).

DARTS seeks to find the architecture α* that minimizes Lvalðω
�; α�Þ, where the weights ω*

associated with the architecture minimize the training loss ω� ¼ argminω Ltrainðω; α�Þ, This
indicates a bi-level optimization problem as

EQ-TARGET;temp:intralink-;e004;116;193min
α
Lvalðω

�ðαÞ; αÞ; (4)

EQ-TARGET;temp:intralink-;e005;116;145such:that ω�ðαÞ ¼ arg minω Ltrainðω; αÞ: (5)

It is computationally expensive to solve the optimization problem precisely; i.e., computing

the true loss by training ω for each architecture. Utilizing a one-step approximation, the training

of α and ω is performed by alternating the gradient steps in the weights and the architecture

parameters.

Fig. 3 Schematic of a DARTS cell. Left: a computational cell with four nodes C0 − C3. Edges

connecting the nodes represent some candidate operations (e.g., 5 × 5 convolution, 3 × 3 convo-

lution, and max-pooling shown in Fig. 3 by red, blue, and green lines, respectively). Right: the best-

performing cell learnt from retaining the optimal operations. Figure inspired by Elsken et al.43
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The weights are optimized by descending in the direction ∇ωLtrainðω; αÞ, while α is opti-

mized by descending in the direction ∇αLvalðω − ξ∇ωLtrainðω; αÞ; αÞ, where ξ is equal to the

learning rate for the weights optimizer.

Two types of cells are defined and optimized in DARTS:

• Normal cell which maintains the output spatial dimension the same as input

• Reduction cell which reduces the output spatial dimension while increasing the number of

filters/channels

The final architecture is then formed by stacking these cells.

3.2 DARTS Parameters for Architecture Search

For the stage of architecture search, 80% of the dataset was held out for equally sized training

and validation subsets, and 20% for testing. Images were normalized and downsampled to

4 different sizes of 32 × 32, 64 × 64, 96 × 96, and 128 × 128 pixels, with corresponding batch

sizes of 64, 14, 8, and 4, respectively.

The following candidate operations were included in the architecture search stage: 3 × 3 and

5 × 5 separable convolutions, 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3max-pooling,

3 × 3 average-pooling, skip-connection, and zero. For the convolutional operations, a ReLU-

Conv-BN order was used. If applicable, the operations were of stride one. The convolved feature

maps were padded to preserve their spatial size.

A network of eight cells was then used to conduct the search for a maximum of 30 epochs.

The initial number of channels was 16 to make sure the network could fit into a single GPU.

Stochastic gradient decent with a momentum of 0.9, initial learning rate of 0.1, and weight decay

of 3 × 10−4 was used to optimize the weights. To obtain enough learning signal, DARTS utilizes

zero initialization for architecture variables indicating the same amount of attention over all

possible operations as it is taking the softmax after each operation.

Adam optimizer44 with an initial learning rate of 0.1, momentum of (0.5, 0.999), and weight

decay of 10−3 were used as the optimizer for α.

3.3 Models Training Parameters

Training occurred subsequently, using annotations provided by the expert cardiologist. It was

carried out independently for each of the four different image sizes of 32 × 32, 64 × 64, 96 × 96,

and 128 × 128 pixels. Identical training, validation, and testing datasets were used in all network

models. The validation dataset was used for early stopping to avoid redundant training and over-

fitting. Each model was trained until the validation loss plateaued. The test dataset was used for

the performance assessment of the final trained models. The DARTS models were kept blind to

the test dataset during the stage of architecture search.

Adam optimizer with a learning rate of 10−4 and a maximum number of 800 epochs was used

for training the models. The cross-entropy loss was used as the networks objective function. For

training the DARTS model, a learning rate of 0.1 deemed to be a better compromise between

speed of learning and precision of result and was therefore used. A batch size of 64 or the maxi-

mum which could be fitted on the GPU (if <64) was employed.

It is evident from Fig. 2 that the dataset is fairly imbalanced with unequal distribution of

different echo views. To prevent potential biases towards more dominant classes, we used online

batch selection where the equal number of samples from each view were randomly drawn (by

over-sampling of underrepresented classes). This led to training on a balanced dataset represent-

ing all classes in every epoch. An epoch was still defined as the number of iterations required for

the network to meet all images in the training dataset.

3.4 Evaluation Metrics

Several metrics were employed to evaluate the performance of the investigated models in this

study. Overall accuracy was calculated as the number of correctly classified images as a fraction
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of the total number of images. Macro average precision and recall (average overall views of per-

view measures) were also computed. F1 score was calculated as the harmonic mean of the pre-

cision and recall. Since this study is a multi-class problem, F1 score was the weighted average,

where the weight of each class was the number of samples from that class.

PyTorch45 was used to implement the models. For the computationally intensive stage of

architecture search, a GPU server equipped with 4 NVIDIA TITAN RTX GPUs with 64 GB

of memory was rented. For the subsequent training of the searched networks and also the stan-

dard models, the utilized GPU was an Nvidia QUADRO M5000 with 8 GB of memory, rep-

resenting a more widely accessible hardware for real-time applications. Inference time (latency

time for classifying each image) was also estimated with the trained models running on the GPU.

To this end, a total of 100 images were processed in a loop, and the average time was recorded.

All training/prediction computations were carried using identical hardware and software resour-

ces, allowing for a fair comparison of computational time-efficiency between all network models

investigated in this study.

The number of trainable parameters in the model, as well as the training time per epoch was

also recorded for all CNN networks.

4 Results and Discussion

4.1 Architecture Search

The search took ∼6, 23, 42, and 92 h for image sizes of 32 × 32, 64 × 64, 96 × 96, and

128 × 128 pixels, respectively, on the computing infrastructure described earlier (Sec. 3.4).

Figure 4 shows the best convolutional normal and reduction cells obtained for the input image

size of 128 × 128 pixels. The retained operations were 3 × 3 and 5 × 5 dilated convolutions,

3 × 3 max-pooling, and skip-connection. Each cell is assumed to have two inputs which are

the outputs from the previous and penultimate cells. The output of the cell is defined as the

depth-wise concatenation of all nodes in the cell.

Fig. 4 Optimal normal and reduction cells for the input image size of 128 × 128 pixels, as sug-

gested by the DARTS method, where 3 × 3 and 5 × 5 dilated separable convolutions, 3 × 3 max-

pooling, and skip-connection operations have been retained from the candidate operations initially

included. Each cell has two inputs which are the cell outputs in the previous two layers. The output

of the cell is defined as the depth-wise concatenation of all nodes in the cell. A schematic view

of the 2-cell-DARTS, formed from a sequential stack of two cells, is also displayed on the left.

Stem layer incorporates a convolution layer and a batch normalization layer.
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Two network architectures were assembled from the optimal cell; “1-cell-DARTS” com-

posed of one cell only, and “2-cell-DARTS” formed from a sequential stack of two cells.

Addition of more cells to the network architecture did not significantly improve the prediction

accuracy, as reported in the next section, but increased the number of trainable parameters in the

model and thus the inference time for view classification. Therefore, the models with more than

two cells, i.e., architectures with redundancy, were judged as being comparatively inefficient and

thus discarded. Figure 4 (left side) also shows the full architecture for the 2-cell-DARTS model

for the input image size of 128 × 128 pixels.

4.2 View Classification

Results for five different network topologies and different image sizes are provided in Table 1.

Despite having significantly fewer trainable parameters, the two DARTS models showed com-

petitive results when compared with the standard classification architectures (i.e., VGG16,

ResNet18, and DenseNet201). The 2-cell-DARTS model, with only ∼0.5-m trainable parame-

ters, achieves the best accuracy (93% to 96%), precision (92.5% to 95.2%), and recall (92.3% to

95.1%) among all networks and across all input image resolutions. Deeper standard neural net-

works, if employed for echo view detection, would therefore be significantly redundant, with up

to 99% redundancy in trainable parameters.

On the other hand, while maintaining a comparable accuracy to standard network topologies,

the 1-cell-DARTS model has ≤0.09 m trainable parameters and the lowest inference time

amongst all models and across different image resolutions (range 3.6 to 7.2 ms). This would

allow processing about 140 to 280 frames per second, thus making real-time echo view clas-

sification feasible.

Compared with manual decision making, this is a significant speedup. Although the iden-

tification of the echo view by human operators is almost instantaneous (at least for easy cases),

the average time for the overall process of displaying/identifying/recording the echo view takes

several seconds.

Having fewer trainable parameters, both DARTS models also exhibit faster convergence and

shorter training time per epoch than standard deeper network architectures: 157� 116 s versus

622� 576 s, respectively, for the training dataset we used.

The confusion matrix for the 2-cell-DARTS model and image resolution of 128 × 128 pixels

is provided in Fig. 5. The errors appear predominantly clustered between a certain pair of views

which represent anatomically adjacent imaging planes. The A5CH view proves to be the hardest

one to detect (accuracy of about 80%), as the network is confused between this view and other

apical windows. This is in line with previous observations that the greatest challenge lies in

distinguishing between the various apical views.31

Interestingly, the two views the model found most difficult to correctly differentiate (A4CH-

LV versus A5CH, and A2CH versus A3CH) were also the two views on which the two experts

disagreed most often.38 The A4CH view is in an anatomical continuity with the A5CH view. The

difference is whether the scanning plane has been tilted to bring the aortic valve into view, which

would make it A5CH. When the valve is only partially in view, or only in view during part of the

cardiac cycle, the decision becomes a judgement call and there is room for disagreement.

Similarly, the A3CH view differs from the A2CH view only in a rotation of the probe anticlock-

wise, again to bring the aortic valve into view

It is also interesting to note that the misclassification is not fully asymmetrical. For instance,

while 42 cases of A5CH images are confused with A4CH-LV, there are only 14 occasions of

A4CH-LV images mistaken for A5CH.

On the other hand, echo views with distinct characteristics are easier for the model to

distinguish. For instance, PLAX-full and Suprasternal seem to have higher rates of correct

identification, and the network is confused only on one occasion between these two views.

This is also evident on the t-distributed stochastic neighbor embedding (t-SNE) plot in Fig. 6,

which displays a planar representation of the internal high-dimensional organization of the 14

trained echo view classes within the network’s final hidden layer (i.e., input data of the fully

connected layer). Each point in the t-SNE plot represents an echo image from the test dataset.
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Noticeably, not only has the network grouped similar images together (a cluster for each

view, displayed with different color), but it has also grouped similar views together (highlighted

with a unique background color). For instance, it has placed A5CH (blue) next to A4CH (dark

brown), and indeed there is some “interdigitation” of such cases, e.g., for those whose classi-

fication between A4CH and A5CH might be debatable. Similarly, at the top right, the network

has discovered that the features of the Subcostal-IVC images (green) are similar to the Subcostal

images (red). This shows that the network can point to relationships and organizational patterns

efficiently.

Table 1 Experimental results on the test dataset for input sizes of (32 × 32), (64 × 64), (96 × 96),

and (128 × 128) and different network topologies. Accuracy is ratio of correctly classified images to

the total number of images; precision and recall are the macro average measures (average overall

views of per-view measures); F1 score is the harmonic mean of precision and recall. The values in

bold indicate the best performance for each measure.* For these experiments, a maximum batch

size of <64 could be fitted on the GPU.

Network
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 Score
(%)

Parameters
(thousands)

Inference
Time (ms)

Time/epoch
(s)

(32 × 32)

1-cell-DARTS 88.4 87.8 87.1 87.4 58 3.6 41

2-cell-DARTS 93.0 92.5 92.3 92.3 411 7.0 46

ResNet18 90.6 89.9 89.7 89.8 11,177 11.8 184

Vgg16 90.7 89.9 89.5 89.6 134,316 8.3 210

DenseNet201 88.3 87.9 87.0 87.4 20,013 119 1303

(64 × 64)

1-cell-DARTS 90.0 89.4 88.7 89.0 92 6.5 81

2-cell-DARTS 95.0 94.7 94.2 94.4 567 12.6 121

ResNet18 92.1 91.5 91.7 91.5 — 12.0 185

Vgg16 92.4 91.5 92.2 91.8 — 8.5 240

DenseNet201 93.1 92.5 92.8 92.6 — 127.3 1322

(96 × 96)

1-cell-DARTS 93.2 92.8 92.3 92.5 101 7.2 141

2-cell-DARTS 95.4 95.1 94.9 94.9 669 14.2 264

ResNet18 93.1 92.4 92.2 92.3 — 12.1 186

Vgg16 93.6 92.9 93.0 92.9 — 8.6 276

DenseNet201 93.8 93.0 93.3 93.1 — 129.0 1336

(128 × 128)

1-cell-DARTS 92.5 92.3 91.4 91.8 89 5.9 180

2-cell-DARTS 96.0 95.2 95.1 95.1 545 11.8 380*

ResNet18 92.9 92.6 92.2 92.4 — 12.2 196

Vgg16 93.2 92.1 92.7 92.3 — 9.0 429*

DenseNet201 93.8 93.1 93.2 93.1 — 129.4 1605*
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Figure 7 shows examples of misclassified cases, when the prediction of the 2-cell-DARTS

model disagreed with the expert annotation. The error can be explained by the inherent difficulty

of deciding, even for cardiologist experts, between views that are similar in appearance to human

eyes and are in spatial continuity (case of A4CH/A5CH mix-up), images of poor quality (case of

A4CH/PSAX mix-up), or views in which a same view-defining structure may be present (case of

PSAX-LV/PSAX/AV mix-up).

Fig. 6 t-Distributed Stochastic Neighbor Embedding (t-SNE) visualization of 14 echo views from

the 2-cell-DARTS model (128 × 128 image size). Each point represents an echo image from the

test dataset, and different colored points represent different echo view classes.

Fig. 5 Confusion matrix for the 2-cell-DARTS model and input image resolution of

128 × 128 pixels.
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4.3 Impact of Image Resolution, Quality, and Dataset Size

The models seem to exhibit a plateau of accuracy between the two larger image resolutions

of 96 × 96 and 128 × 128 pixels (Fig. 8). On the other hand, for the smaller image size of

32 × 32 pixels, the classification performance seems to suffer across all network models, with

a 2.3% to 5.1% reduction in accuracy relative to the resolution of 96 × 96 pixels.

Shown in Fig. 9’s upper panel, is the class-wise view detection accuracy for various input

image resolutions. Notably, not all echo views are affected similarly using lower image reso-

lutions. The drop in overall performance is therefore predominantly caused by a marked decrease

in detection accuracy of only certain views. For instance, A4CH-RV suffers a sharp reduction of

>10% in prediction accuracy when dealing with images of 32 × 32 pixels.

Figure 9’s lower panel shows the relative confusion matrix, illustrating the improvement

associated with using image resolution of 96 × 96 versus 32 × 32 pixels. Being already a diffi-

cult view to detect even in higher resolution images, A5CH will have 47 more cases of mis-

classified images when using images of 32 × 32 pixels. Overall, apical views seem to suffer the

most from lower resolution images, being mainly misclassified as other apical views. For in-

stance, the two classes associated with the A4CH will primarily be mistaken for one another.

This is likely because, with a decreased resolution, the details of their distinct features would be

less discernible by the network. Conversely, parasternal views seem to be less affected, and still

detectable in downsampled images. This could be owing to the fact that the relevant features,

on which the model relies for identifying this view, are still present and visible to the model.

Overall, and for almost all echo views, the image size of 96 × 96 pixels appeared to be a good

compromise between classification accuracy and computational costs.

Fig. 7 Three different misclassified examples predicted by the 2-cell-DARTS model for the image

resolution of 128 × 128 pixels.

Fig. 8 Comparison of accuracy for different classification models and different image resolutions;

image width of 32 correspond to the image resolution of 32 × 32 pixels.
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To examine the influence of the size of the training dataset on the model’s performance, we

conducted an additional experiment where we split the training data into sub-datasets with strict

inclusion relationship (i.e., having the current sub-dataset a strict subset of the next sub-dataset),

and ensured all the sub-datasets were consistent (i.e., having the same ratio for each echo view as

in the original training dataset). We then retrained all targeted neural networks on these sub-

datasets from scratch, and investigated how their accuracy varied with respect to the size of the

dataset used for training the model. The size of the validation and testing datasets, however,

remained unchanged.

Figure 10 shows a drop in the classification accuracy across all models when smaller sizes of

training data are used for training the networks. However, various models are impacted differ-

ently. Suffering from redundancy, deeper neural networks require more training data to achieve

similar performances. DenseNet, with the largest number of trainable parameters, appears to be

Fig. 9 Accuracy of the 2-cell-DARTSmodel for various input image resolutions. Upper: class-wise

prediction accuracy. Lower: relative confusion matrix showing improvement associated with using

image resolution of 96 × 96 versus 32 × 32 pixels.
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the one which suffers the most, with a 20% reduction in its classification accuracy, when only 8%

of the training dataset is used.

However, the DARTS-based models appear to be relatively less profoundly affected by the

size of the training dataset, where both models demonstrate no more than 8% drop in their pre-

diction accuracy when deprived of the full training dataset. When using fewer than 12,400

images (i.e., 50% of the training dataset), both DARTS-based models exhibit superior perfor-

mance over the deeper networks.

Additionally, we hypothesized that the more numerous the echo view classes, the more

difficult the task of distinguishing the views for deep learning models, e.g., because of more

chances of misclassifications among classes. This is potentially the underlying reason for the

inconsistent accuracies (84% to 97%) reported in the literature when classifying between

6 to 12 different view classes. To investigate this premise, we considered cases when only

5 or 7 different echo views were present in the dataset. To this end, rather than reducing the

number of classes by merging several views to create new classes which may not be clinically

very helpful, we were selective in choosing some of the existing classes. For each study,

we aimed at including views representing anatomically adjacent or similar imaging planes such

as apical windows (thus challenging for the models to distinguish), as well as other echo

windows. The list of echo views included in each study is provided in Table 2.

The results show an increase in the overall prediction accuracy for the two DARTS-based

models, when given the task of detecting fewer echo view classes and despite having relatively

smaller training datasets to learn from. The 1-cell-DARTS model shows 8% improvement in its

performance when the number of echo views is reduced from 14 to 5. The 2-cell-DARTS model

reaches a maximum accuracy of 99.3%, i.e., higher than any previously reported accuracies for

echo view classification. This highlights the fact that for a direct comparison of the classification

accuracy between the models reported in literature, the number of different echo windows

included in the study must be taken into account.

Finally, in order to study the impact of image quality on the classification performance, we

asked a second expert cardiologist to provide an assessment of image quality in the A4CH-LV

views, and assign a quality label to each image where the quality was classified into 5 grades:

very poor, poor, average, good, and excellent. Figure 11 shows the relationship between the

classification accuracy of the 2-cell-DARTS model and the image quality in the test dataset.

The area of the bubbles represents the relative frequency of the images in that quality score

category, with the good category as the dominant grade. This is likely because the image acquis-

ition had been performed mainly by experienced echocardiographers.

Fig. 10 Comparison of accuracy of different classification models for image size of 128 × 128

versus different fragments of training dataset used when training the models. For each sub-

dataset, all models were retrained from scratch.
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The correlation between the classification accuracy and the image quality is evident (p-value

of 0.01). Images labeled as having “excellent” quality, indicated the highest classification accu-

racy of ∼100%. It is apparent that the discrepancy between the model’s prediction and the expert

annotation is higher in poor quality images. This could potentially be due to the fact that poorly

visible chambers with a low degree of endocardial border delineation could result in some views

being mistaken for other apical windows.

Fig. 11 Correlation between the classification accuracy and the image quality (judged by the

expert cardiologist) of A4CH-LV view in the test dataset. Area of the bubbles represent the relative

frequency of the images in that quality score category. Results correspond to the 2-cell-DARTS

model and image resolution of 128 × 128 pixels. Here, p-value is the probability that the null

hypothesis is true; i.e., the probability that the correlation between image quality and classification

accuracy in the sample data occurred by chance.

Table 2 The dependence of overall accuracy on the number of echo views; experimental results

on the test dataset with 5, 7, and 14 classes for different network topologies, and image resolution

of 64 × 64 pixels. The seven-class study included A2CH, A3CH, A4CH-LV, A5CH, PLAX-full,

PSAX-LV, subcostal-IVC, and a total of 24,464 images. The five-class study included A4CH-

LV, PLAX-full, PSAX-AV, Subcostal, Suprasternal, and a total of 18,896 images. Accuracy is ratio

of correctly classified images to the total number of images; precision and recall are the macro

average measures (average overall views of per-view measures); F1 score is the harmonic mean

of precision and recall.

Network
Accuracy

(%)
Precision

(%)
Recall
(%)

F1 Score
(%)

Parameters
(thousands)

Inference
time (ms)

Time/epoch
(s)

1-cell-DARTS

14-classes 90.0 89.4 88.7 89.0 92 6.5 81

7-classes 96.4 96.1 96.1 96.1 110 7.8 58

5-classes 98.1 98.3 97.9 98.1 85 6.6 38

Two-cell-DARTS

14-classes 95.0 94.7 94.2 94.4 567 12.6 121

7-classes 97.0 96.9 96.7 96.8 709 15.6 85

5-classes 99.3 99.3 99.1 99.2 556 12.9 55

Azarmehr et al.: Neural architecture search of echocardiography view classifiers

Journal of Medical Imaging 034002-16 May∕Jun 2021 • Vol. 8(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Medical-Imaging on 16 Aug 2021
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



4.4 Study Limitations and Future Work

This study sheds light on several possible directions for future work. Herein, we have focused on

the rapid and accurate classification of individual frames from an echo cine loop. Such a task will

be crucial for a real-time view detection system in clinical scenarios where images need to be

processed while they are acquired from the patient and/or where the system is to be used for

operator guidance. However, for offline studies and when the entire cine loop is available, clas-

sification of the echo videos could also be of practical use. Some studies have attempted video

classification using the majority vote on some or all frames from a given video.6,34 However, this

approach does not use the temporal information available in the cine loop, such as the movement

of structures during the cardiac cycle. Therefore, a future study could look into using all available

information for view detection.

Our study investigated 2D echocardiography as the clinically relevant modality. Currently,

3D echocardiography suffers from a considerable reduction in frame rate and image quality, and

this has limited its adoption into routine practice over the past decade.46–48 When such issues are

resolved, automatic processing of the 3D modality could also be explored. In the meantime,

2D echocardiography remains unrivalled, particularly when high frame rates are needed.

We investigated the impact of image quality on the classification accuracy for apical four-

chamber views only. A more comprehensive examination of the image quality and its influence

on the detection of different echo views would be informative.

The dataset used in this study comprised images acquired using ultrasound equipment from

GE and Philips manufacturers. Although the proposed models do not make any a priori assump-

tions on data obtained from specific vendors and therefore should be vendor-neutral, echo stud-

ies using more diverse ultrasound equipment should still be explored.

Similar to all previous studies, our dataset originated from one medical center, i.e., Imperial

College Healthcare NHS Trust’s echocardiogram database. Representative multi-center patient

data will be essential for ensuring that the developed models will scale up well to other sites and

environments.

Interpreting the results of the proposed models alongside other proposed architectures in the

literature (with a wide range of reported accuracies) was not feasible. This is due to the fact that a

direct comparison of the classification accuracy would require access to the same patient dataset.

At present, no echocardiography dataset and corresponding annotations for view detection are

publicly available.

In order to address such broadly acknowledged shortcomings in the application of deep learn-

ing to echocardiography, we are now developing Unity (data.unityimaging.net), a UK collabo-

rative of cardiologists, physiologists and computer scientists, under the aegis of the British

Society of Echocardiography. An image analysis interface has been developed in the form

of a web-based, interactive, real-time platform to capture carefully curated expert annotations

from numerous echo specialists, with patient data provided by over a dozen sites across the UK,

thus ensuring coverage of multiple vendors, systems and environments. All developed models

designed using this annotation biobank (e.g., automated cardiac phase detection,49 left ventricu-

lar segmentation,50 and view classification in current study), will be made available under open-

source agreements on intsav.github.io.

5 Conclusion

In this study, efficient CNN architectures are proposed for automated identification of the 2D

echocardiographic views. The DARTSmethod was used in designing optimized architectures for

rapid inference while maintaining high accuracy. A dataset of 14 different echocardiographic

views was used for training and testing the proposed models. Compared with the standard clas-

sification CNN architectures, the proposed models are faster and achieve comparable classifi-

cation performance. Such models can thus be used for real-time detection of the standard

echo views.

The impact of image quality and size of the training dataset on the efficacy of the models was

also investigated. Deeper neural network models, with a large number of redundant trainable
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parameters, require more training data to achieve similar performances. A direct correlation

between the image quality of classification accuracy was observed.

The number of different echo views to be detected has a direct impact on the performance of

the deep learning models, and must be taken into account for a fair comparison of classification

models.

Aggressively downsampled images will result in losing relevant features, thus lowering the

prediction accuracy. On the other hand, while much larger images may be favored for some fine-

grained applications (e.g., segmentation), their use for echo view classification would offer only

slight improvements in performance (if any) at the expense of more processing and memory

requirements.
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